

PROPRIETARY NOTE

THIS SPECIFICATION IS THE PROPERTY OF BOE HF AND SHALL NOT BE
REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF BOE HF AND
MUST BE RETURNED TO BOE HF UPON ITS REQUEST

BOE

SPEC. NUMBER	PRODUCT GROUP	REV.	ISSUE DATE	PAGE
S8-*	TFT- LCD	P3	2022-11-30	1 OF 32

B3 EV101WXM-N80 Product Specification Rev.P3

BUYER	
SUPPLIER	HEFEI BOE Optoelectronics Technology CO., LTD
FG-Code	EV101WXM-N80-3851

ITEM	BUYER SIGNATURE	DATE

ITEM	SUPPLIER SIGNATURE	DATE
Prepared		
Reviewed		
Approved		

HEFEI BOE OPTOELECTRONICS TECHNOLOGY

PRODUCT GROUP

REV

ISSUE DATE

BOE

TFT- LCD PRODUCT

P3

2022-11-30

SPEC. NUMBER

S8-*

SPEC. TITLE

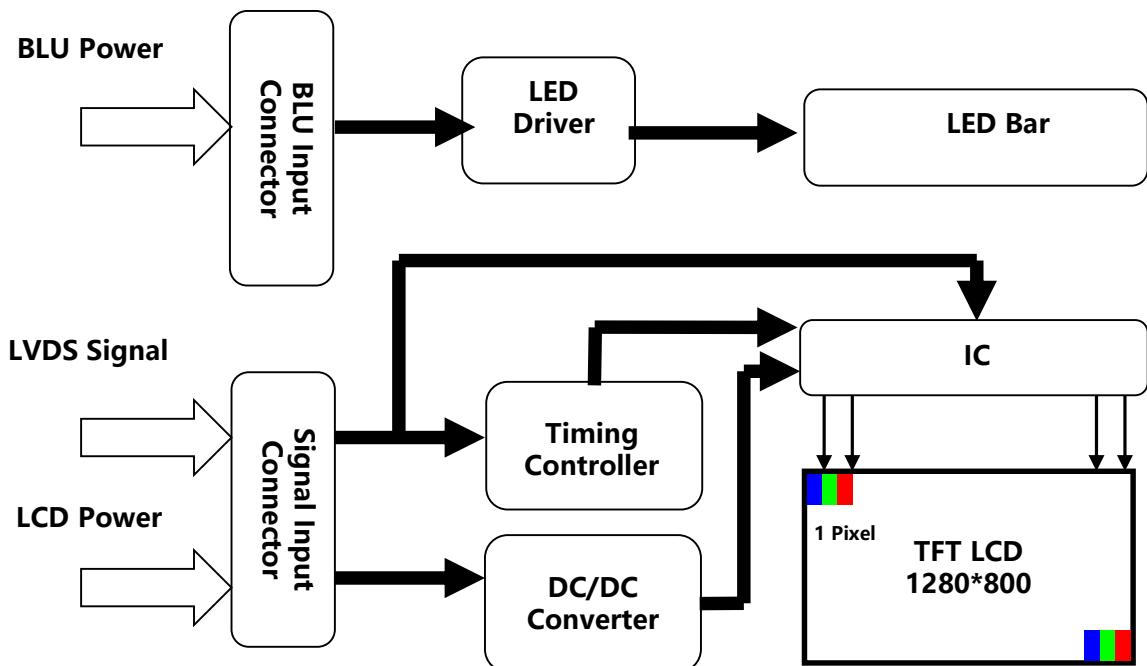
B3 EV101WXM-N80 Product Specification

PAGE

2 OF 32

REVISION HISTORY

REV.	ECN No.	DESCRIPTION OF CHANGES	DATE	PREPARED
P0		Initial Release	2018-03-20	Leon Zhang
P1		Update optical & electronical characters	2018-07-09	Leon Zhang
P2		Update Mechanical Drawing, Update Connector Update TCON、PMIC Code	2022-02-22	Xiaolei Zhang
P3		Update TCON Code For ESD Test Flash	2022-11-30	Xiaolei Zhang


Contents

No.	Items	Page
1.0	General Description	4
2.0	Absolute Maximum Ratings	6
3.0	Electrical Specifications	7
4.0	Optical Specifications	19
5.0	Reliability Test	23
6.0	Packing Information	24
7.0	Product Label	26
8.0	Handling & Cautions	27
9.0	Appendix	31

1.0 GENERAL DESCRIPTION

1.1 Introduction

EV101WXM-N80 is a color active matrix TFT LCD module using amorphous silicon TFT 's (Thin Film Transistors) as an active switching devices. This module has a 10.1 inch diagonally measured active area with WXGA resolutions (1280 horizontal by 800 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors.

1.2 Features

- 1 Port LVDS Interface Input;
- 6+2bit color depth, display 16.7M colors
- Thin and light weight
- High luminance and contrast ratio, low reflection and wide viewing angle
- RoHS compliant

1.3 Application

- Medical Monitor

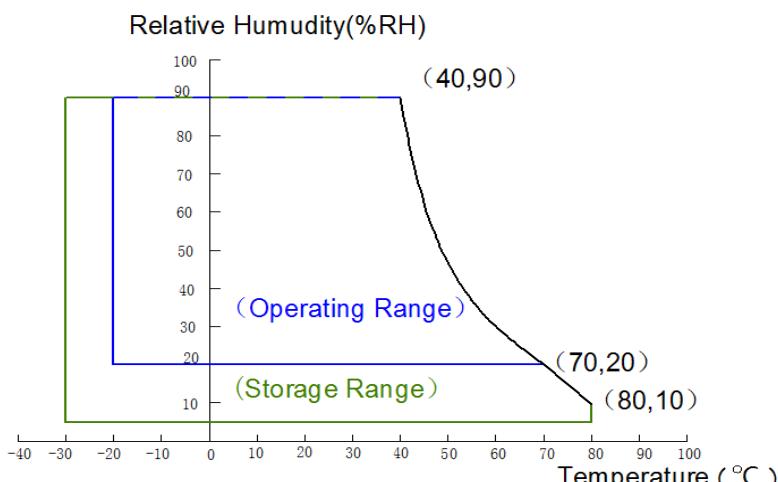
1.4 General Specification

The followings are general specifications at the EV101WXM-N80-3851

<Table 1. LCD Module Specifications>

Parameter	Specification	Unit	Remarks
Active Area	216.96 (H) × 135.6(V)	mm	
Number Of Pixels	1280(H)×800(V)	pixels	
Pixel Pitch	56.5(H) × RGB × 169.5(V)	um	
Pixel Arrangement	Pixels RGB stripe arrangement		
Display Mode	Normally Black		
Display Colors	16.7M	colors	6+ FRC
Surface Treatment	Normal		
Contrast Ratio	900:1(Typ.); 700:1(Min.)		
Viewing Angle(CR>10)	85/85/85/85(Typ.); 80/80/80/80(Min.)	deg.	
Response Time	30(Typ.); 40(Max.)	ms	
Color Gamut	48%(Typ.); 43%(Min.)		
Brightness	400 nit(Typ.); 340 nit(Min.)	cd/m2	
Brightness Uniformity	9 point: min 65% (Before RA) 9 point: min 60% (After RA)		
Power Consumption	3.4(Typ.)	watt	
Outline Dimension	233.2(H)*152.9(V)*6.70(typ)(LCM)	mm	
Weight	505	gram	
Display Orientation	Landscape Only		

2.0 ABSOLUTE MAXIMUM RATINGS


The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. Absolute Maximum Ratings>

Parameter		Symbol	Min.	Max.	Unit	Remarks	
Power Supply	LCD Module	VDD	VSS-0.3	4.0	V	Ta = 25 °C	
	BLU	VLED	VSS-0.3	13.2	V		
		PWM	VSS-0.3	6	V		
		BRTC	VSS-0.3	6	V		
Operating Temperature		T _{OP}	-20	+70	°C	Note 1	
Storage Temperature		T _{ST}	-30	+80	°C		

Note :

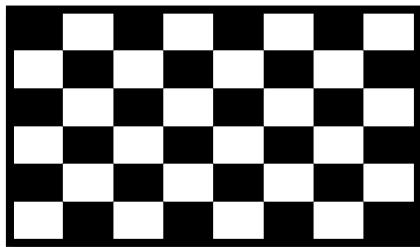
1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C max. and no condensation of water.

3.0 ELECTRICAL SPECIFICATIONS

3.1 TFT LCD Module

< Table 3. LCD Module Electrical specifications >

[Ta = 25±2 °C]


Parameter	Symbol	Values			Unit	Notes
		Min.	Typ.	Max.		
Power Supply Voltage	VCC	3.0	3.3	3.6	V	Signal
Power Supply Current	I _{VCC}	-	250	330	mA	Note 1
Power Consumption	P _{LCD}	-	0.80	1.10	W	

Notes : 1. The supply voltage is measured and specified at the interface connector of LCM.

The current draw and power consumption specified is for VBAT=3.8V, Frame rate f_V=60Hz and Clock frequency = 156.8MHz. Test Pattern of power supply current

a) Typ : Mosaic 8 x 6 Pattern(L0/L255)

b) Max : L255

3.2 Back-Light Unit**Table 4. LED Driver Electrical Specifications >**

[Ta = 25±2 °C]

Parameter	Symbol	Values			Unit	Notes
		Min.	Typ.	Max.		
BLU Supply Voltage	VDD	11.5	12	12.5	V	
BLU Forward Current	I _{VDD}	-	220	280	mA	
Power Consumption	P _{LED}	-	2.6	-	W	Note 1
BLU BRTC Level	BLU ON	3.0	3.3	3.6	V	
	BLU OFF	0		0.5	V	
PWMIN	Level	High Level	3.0	3.3	V	
		Low Level	0		V	
	Frequency	F _{PWM}	180	200	10K	Hz
	Duty Ratio	D _{PWM}	5	-	100	%
LED Life Time		TLED	30000	-	-	Hrs
						Note 2/3

Notes:

1. PLED = VDD × I_{VDD} (Without LED converter transfer efficiency)
2. The life time of LED, 30,000Hrs, is determined as the time at which luminance of the LED is 50% compared to that of initial value at the typical LED current on condition of continuous operating at 25 ± 2°C.
3. Only under the above operating conditions could the life time of LED be guaranteed.

3.3 INPUT TERMINAL PIN ASSIGNMENT

This LCD employs two interface connections, a 20 pin ZIF connector is used for the LCD module electronics interface and a 9 pin ZIF connector is used for the internal backlight system.

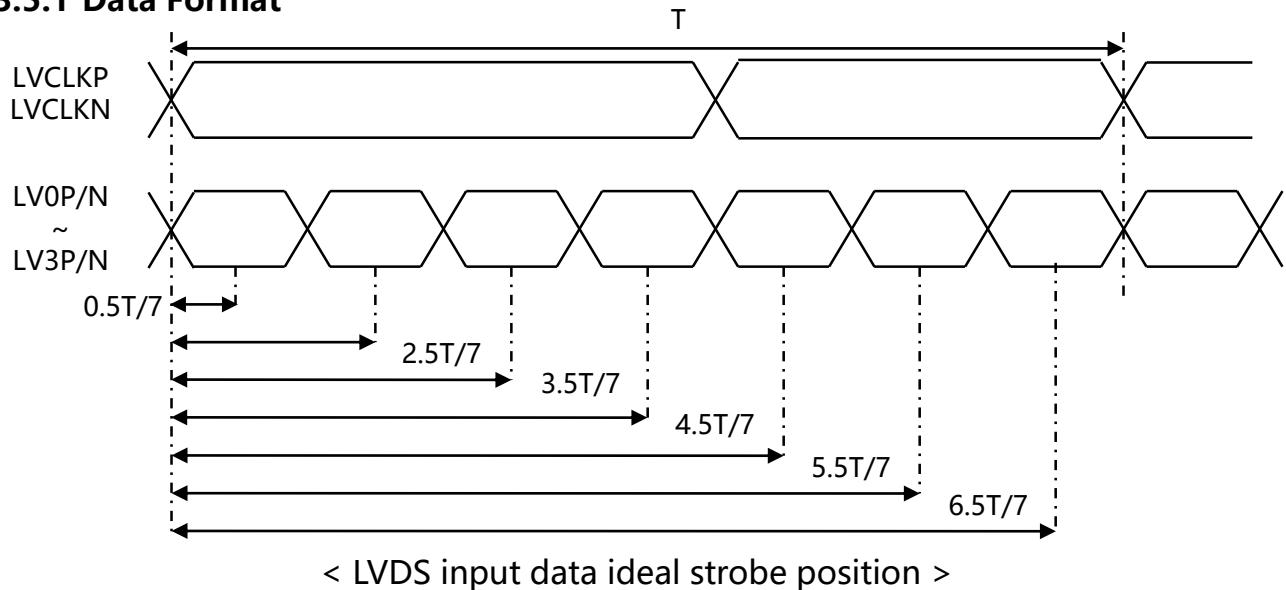
3.3.1 Pin assignment for LCD module

Connector : MSA24013P20A or equivalent

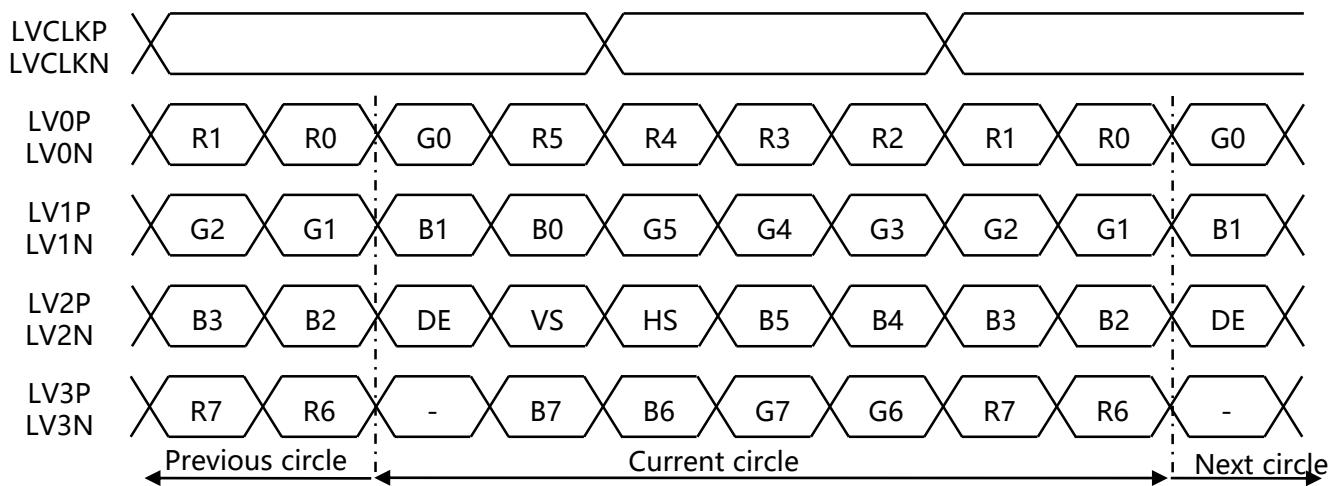
< Table 5. Pin Assignment for LCD Module Connector >

Pin No.	Symbol	Description	Remark
1	VCC	Power supply	
2	VCC	Power supply	
3	N.C.	Connected to WP on PCBA by 0ohm resistor,Pleasef oat.	WP=H:dat a rewrite of all address es isprohib ited
4	GND	Ground	
5	D0-	Pixel data	
6	D0+	Pixel data	
7	GND	Ground	
8	D1-	Pixel data	
9	D1+	Pixel data	
10	GND	Ground	
11	D2-	Pixel data	
12	D2+	Pixel data	
13	GND	Ground	
14	CLK-	CLK data	
15	CLK+	CLK data	
16	GND	Ground	
17	SDA	Not connect	NC
18	SCL	Not connect	NC
19	D3-	Pixel data	
20	D3+	Pixel data	

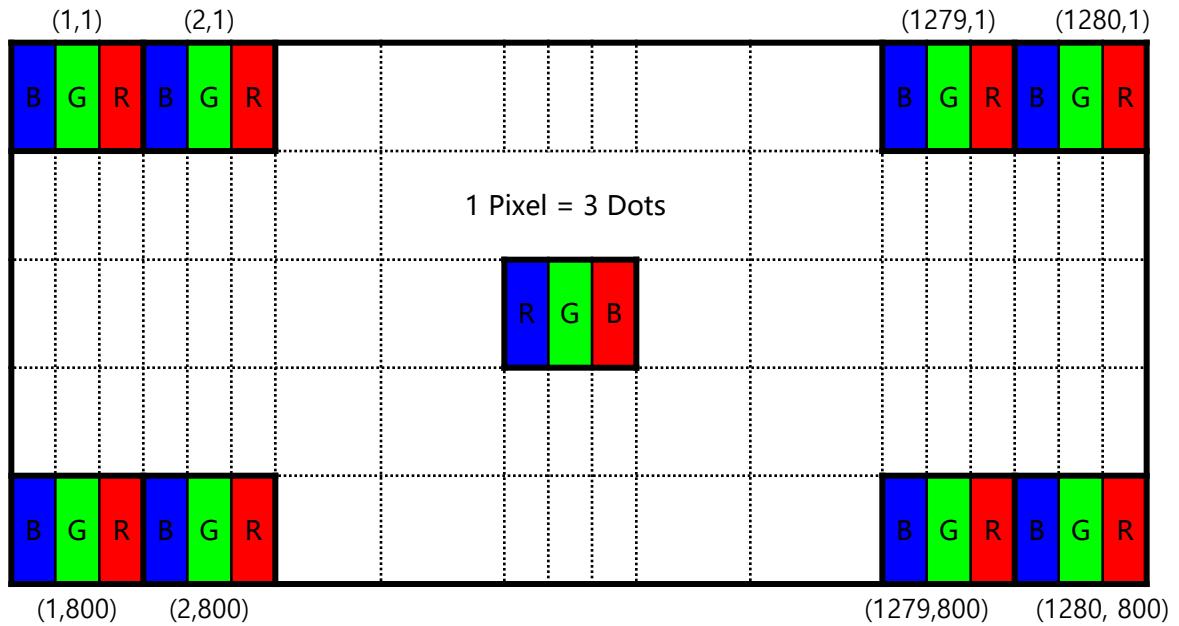
3.4.2 Pin assignment for LED Bar


Connector : MSA24038P6 or equivalent

< Table 6. Pin assignment for LED Bar >

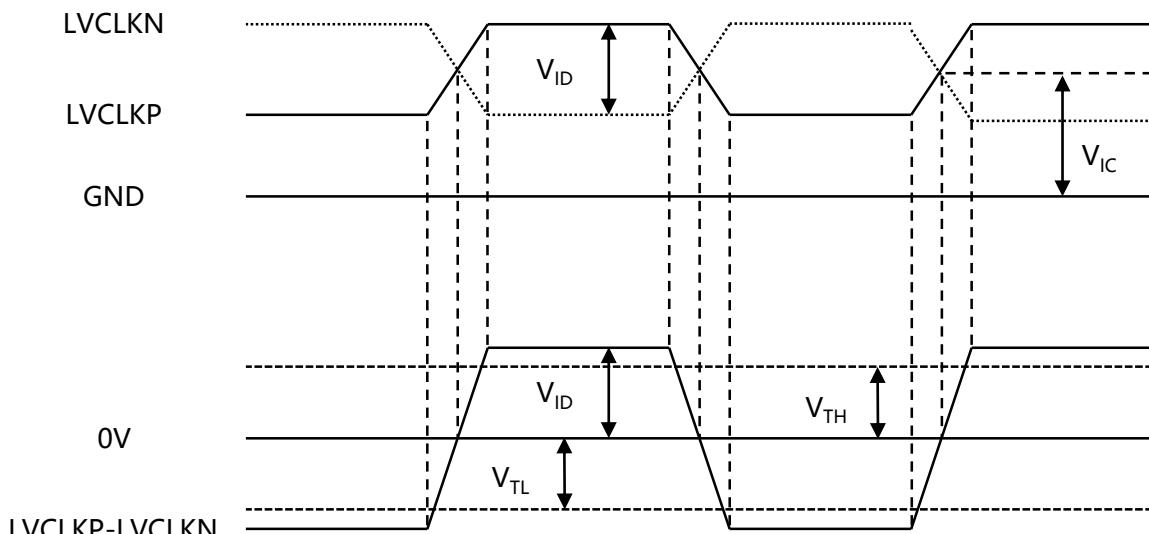

Pin No	Symbol	Description	Remarks
1	PWM	Luminance control	
2	BRTC	Backlight ON/OFF control	High : Backlight ON Low : Backlight OFF
3	GND	Ground	
4	GND	Ground	
5	VDD	Power supply	
6	VDD	Power supply	

3.5 LVDS Interface Characteristic

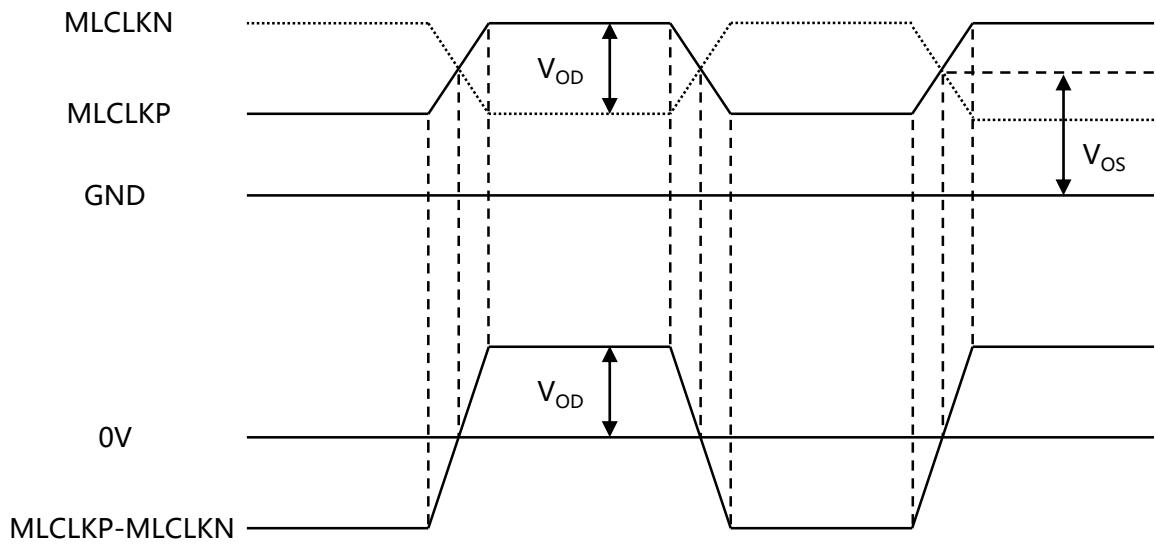
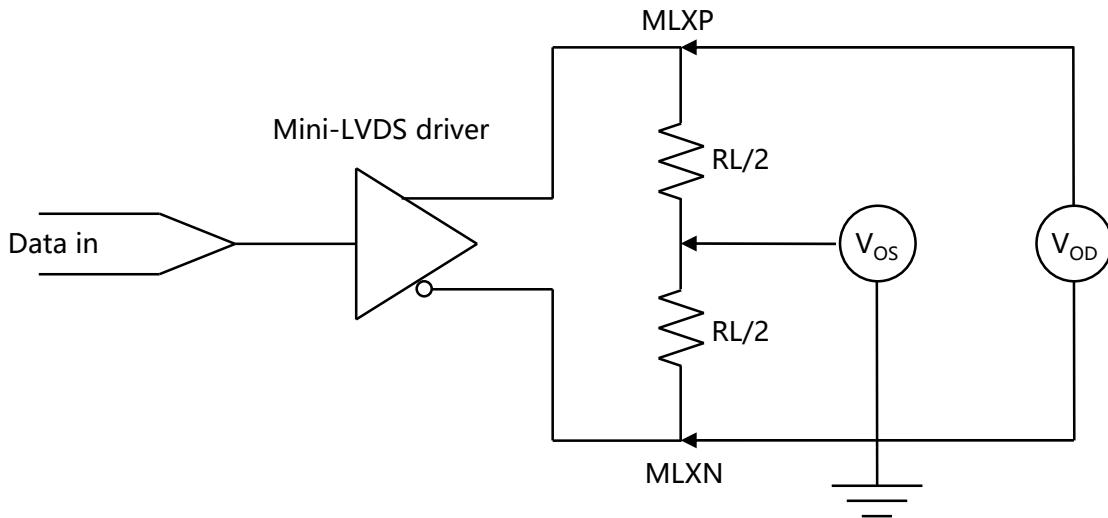

3.5.1 Data Format

3.5.2 LVDS input data mapping

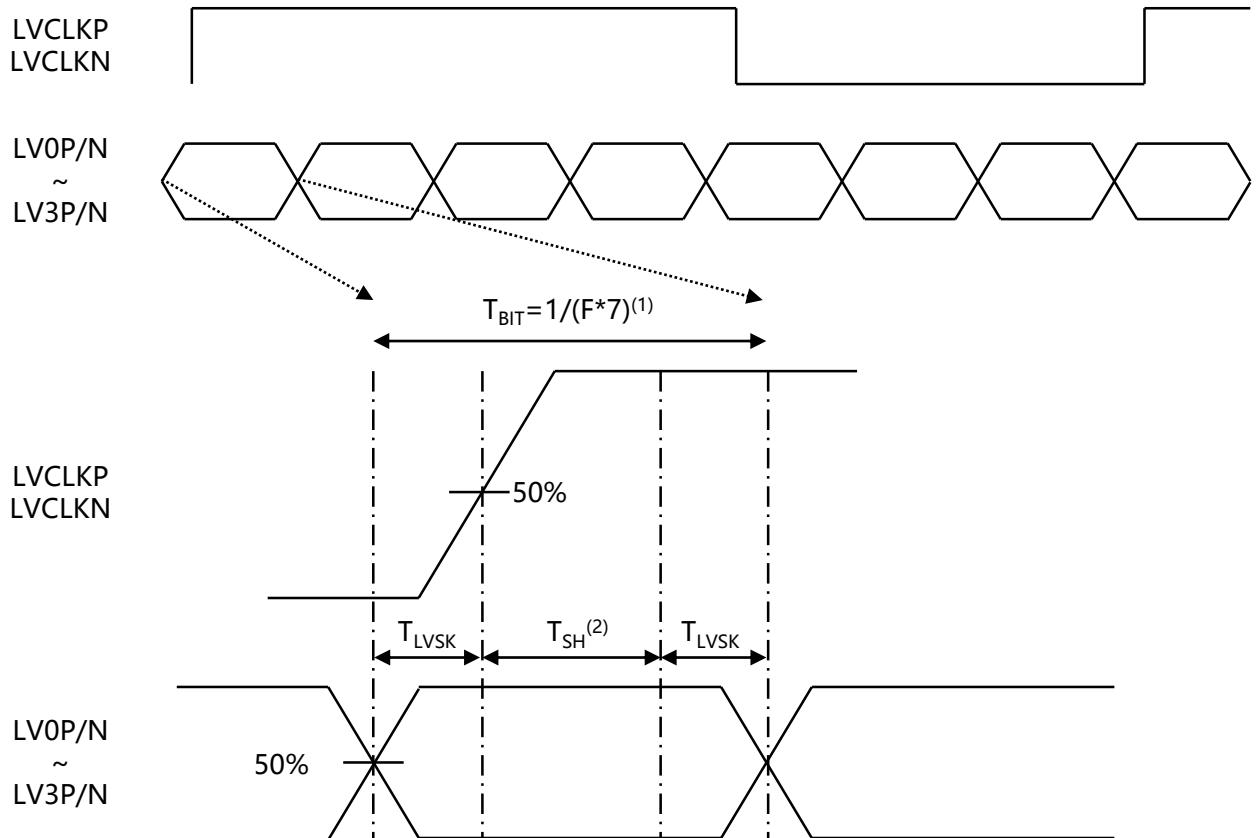
3.5.3 Pixel Format



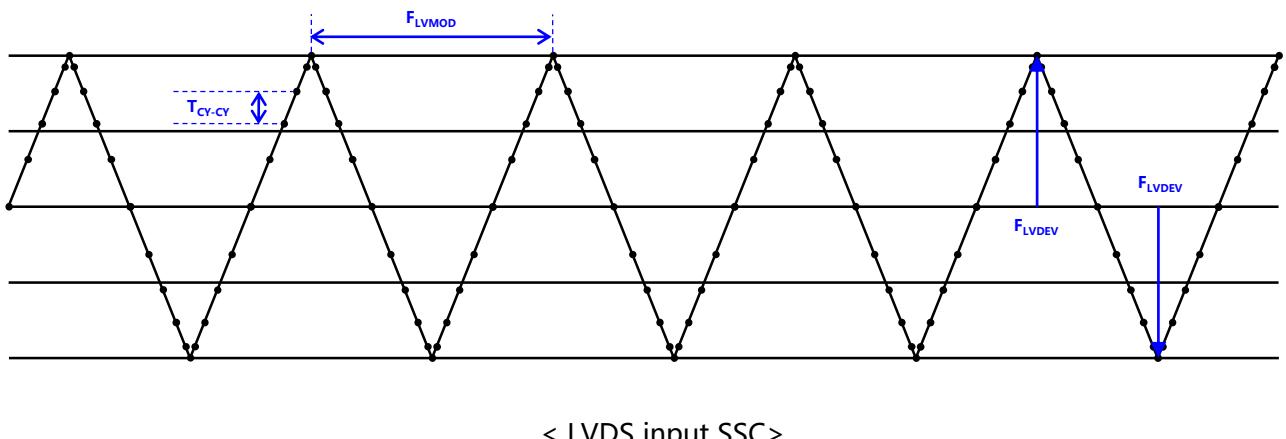
Display Position of Input Data (V-H)



3.5.2 DC Specification

< Table 7. DC Specification >


Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Supply current	I_{DD}	-	100	-	mA	
LVDS DC specifications						
Differential input high threshold	V_{TH}	-	-	+100	mV	$V_{IC}=1.2V$
Differential input low threshold	V_{TL}	-100	-	-	mV	
LVDS common mode voltage	V_{IC}	0.9	-	1.4	V	
LVDS swing voltage	V_{ID}	± 100	-	± 600	mV	
Mini-LVDS DC specifications						
Output differential voltage range	V_{OD}	± 170	± 200	± 230	mV	$PI=14K\Omega$ $RL=100\Omega$ ($T_A=25^\circ C$)
Output differential voltage deviation		0.64	-	0.96	mV	
Output offset voltage range	V_{OS}	1.1	1.2	1.3	V	
Output offset voltage deviation		1.1	1.2	1.3	V	

< LVDS V_{ID} and V_{IC} definition >

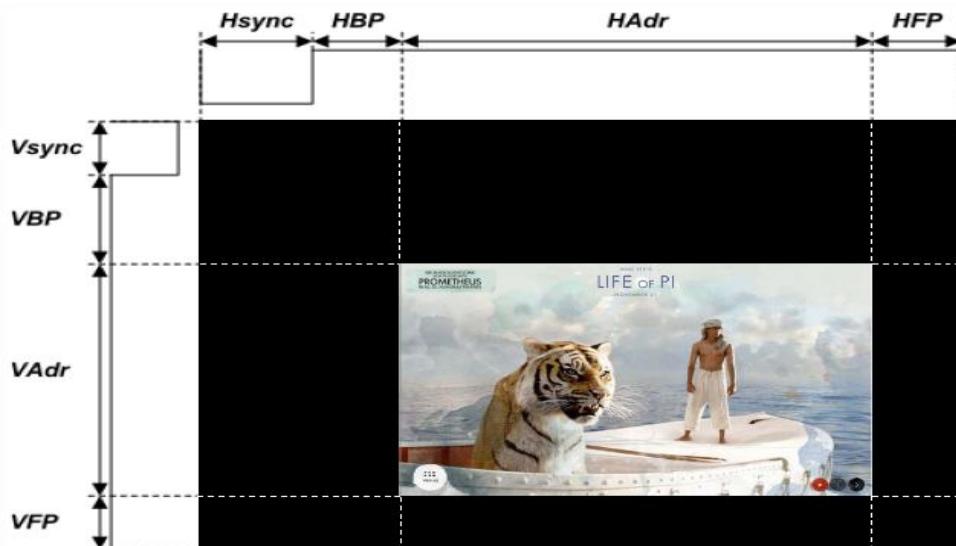


3.5.3 AC Specification

Note:(1) T_{BIT} : Data period

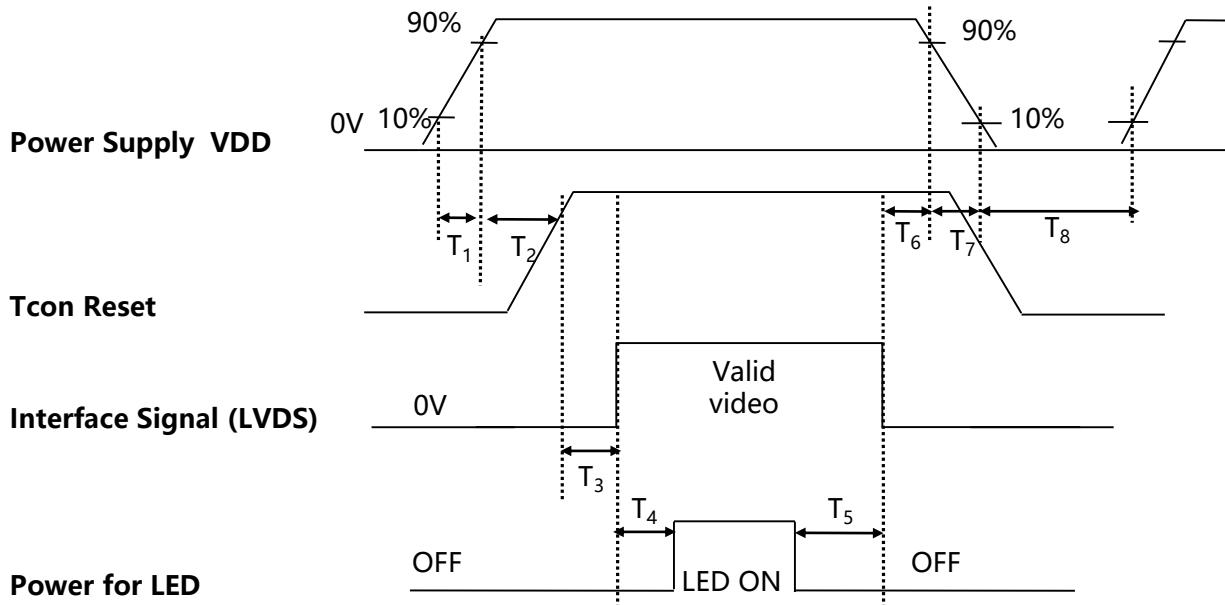
(2) Internal CLK sampling data window

< LVDS channel to channel skew >


< Table 8. AC Specification >

Description	Symbol	Condition	Min.	Typ.	Max.	Unit
LVDS Input frequency	F	-	68	-	74	MHz
LVDS channel to channel skew	T_{LVSK}	$F=65MHz$ $V_{IC}=1.2V$ $V_{ID}=\pm 200mV$	-600	-	+600	ps
Modulating frequency of input clock during SSC	F_{LVMOD}	$F=85MHz$ $V_{IC}=1.2V$ $V_{ID}=\pm 200mV$	10	-	300	KHz
Maximum deviation of input clock frequency during SSC	F_{LVDEV}		-3	-	+3	%
Cycle to cycle jitter	T_{CY-CY}		-	-	200	ps

3.6 Interface timing Parameter


< Table 9. Timing Parameter >

Item		Symbol	Min.	Typ.	Max.	Unit
LCD	Frame Rate	-	59	60	61	Hz
	Pixels Rate	-	69.922	71	72.293	MHz
Timing	Horizontal	Horizontal total time	tHP	-	1440	-
		Horizontal Active time	tHadr	1280		
		Horizontal Back Porch	tHBP		80	-
		Horizontal Front Porch	tHFP		48	-
	Vertical	Vertical total time	tvp		823	-
		Vertical Active time	tVadr	800		
		Vertical Back Porch	tVBP		14	-
		Vertical Front Porch	tVFP		3	-
Lane			-	1	-	Lane

3.8 Power Sequence

[Ta = 25±2 °C]

< Table 10. Sequence Table >

Parameter	Value			Units
	Min.	Typ.	Max.	
T1	0.1	-	8	(ms)
T2	-	8	-	(ms)
T3	0	-	-	(ms)
T4	300	-	-	(ms)
T5	300	-	-	(ms)
T6	0	-	50	(ms)
T7	0	-	10	(ms)
T8	500	-	-	(ms)

4.0 OPTICAL SPECIFICATION

4.1 Overview

The test of Optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25 \pm 2^\circ\text{C}$) with the equipment of Luminance meter system (Goniometer system and TOPCON BM-5) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . The center of the measuring spot on the Display surface shall stay fixed.

The backlight should be operating for 30 minutes prior to measurement.

4.2 Optical Specifications

<Table 11. Optical Specifications >

Parameter		Symbol	Condition	Min.	Typ.	Max.	Unit	Remark	
Viewing Angle Range	Horizontal	Θ_3	CR>10	80	85	-	Deg.	Note1	
		Θ_9		80	85	-	Deg.		
	Vertical	Θ_{12}		80	85	-	Deg.		
		Θ_6		80	85	-	Deg.		
Contrast ratio		CR	$\Theta = 0^\circ$	700	900	-		Note2	
Transmittance		Tr		4.6	5.4	-	%	Note3	
Luminance of White		Y_w		340	400		cd/m ²	Note 4	
White luminance uniformity		ΔY		65	75		%	Note 5	
Color Gamut		CG		43	48	-	%		
Reproduction of color	Red	Rx	$\Theta = 0^\circ$	0.566	0.596	0.626		Note6 (Based on BLU)	
		Ry		0.323	0.353	0.383			
	Green	Gx		0.305	0.335	0.365			
		Gy		0.529	0.559	0.589			

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Remark
	Blue	Bx	0.123	0.153	0.183		
		By	0.086	0.116	0.146		
White Chromaticity	Wx	$\Theta = 0^\circ$	0.283	0.313	0.343		
	Wy		0.299	0.329	0.359		
Response Time (Rising + Falling)	$T_r + T_f$	$T_a = 25^\circ C$ $\Theta = 0^\circ$		30	40	ms	Note 7

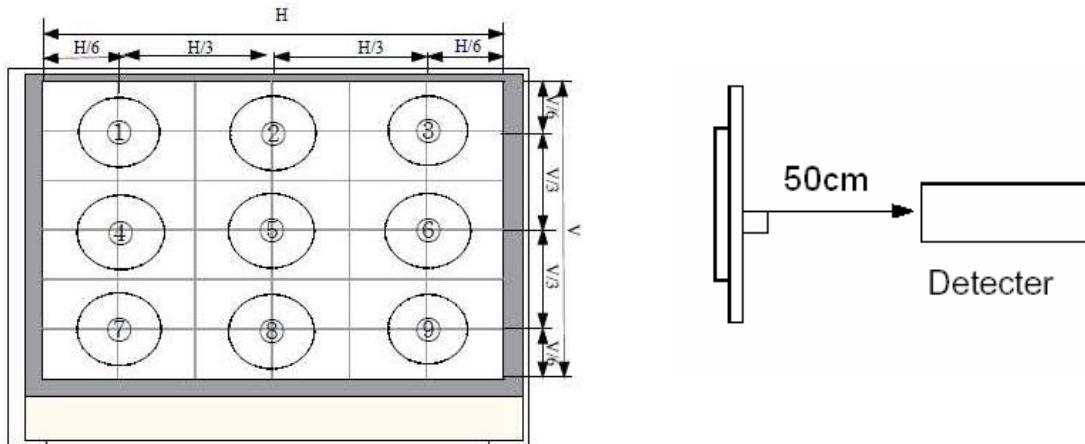
Note:

1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o' clock direction and the vertical or 6, 12 o' clock direction with respect to the optical axis which is normal to the LCD surface (see FIGURE 1).

2. Contrast measurements shall be made at viewing angle of $\Theta = 0$ and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (see FIGURE 1) Luminance Contrast Ratio (CR) is defined mathematically.

$$CR = \frac{\text{Luminance when displaying a white raster}}{\text{Luminance when displaying a black raster}}$$

3. Transmittance is the Value without APF and without CG.


4. Center Luminance of white is defined as the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in FIGURE 2 for a total of the measurements per display.

5:Luminance measurement

The test condition is at $I_{LED}=20mA$ and measured on the surface of LCD module at $25^{\circ}C$.

- The data are measured after LEDs are lighted on for more than 5 minutes and LCM displays are fully white. The brightness is the average value of 9 measured spots. Measurement equipment CS2000 or similar equipments(Field of view:1deg, Distance:50cm)
- Measuring surroundings: Dark room.
- Measuring temperature: $T_a=25^{\circ}C$.
- Adjust operating voltage to get optimum contrast at the center of the display.
- Measured value at the center point of LCD panel must be after more than 5 minutes while backlight turning on.

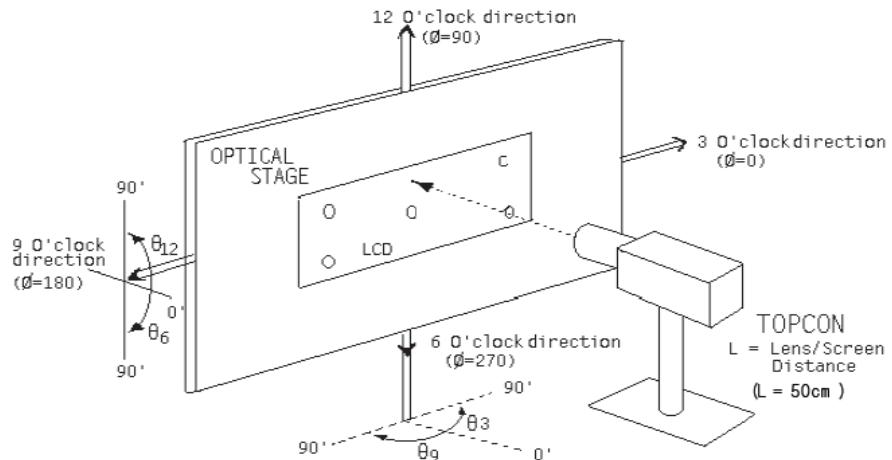
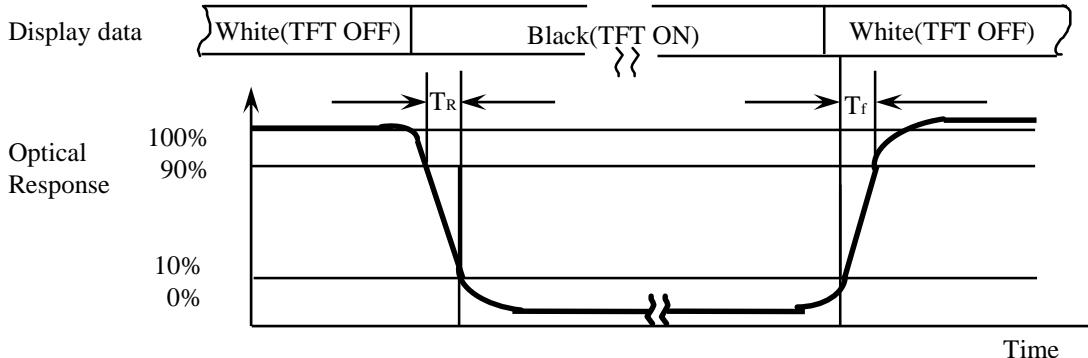
$$\Delta Y = (\text{Minimum Luminance of 9points} / \text{Maximum Luminance of 9points}) * 100$$

6. The color chromaticity coordinates specified in the above table shall be calculated from the spectral data measured with all pixels first in red, green, blue and white.

Measurements shall be made at the center of the panel.

7. The electro-optical response time measurements shall be made as FIGURE

2 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is T_r , and 90% to 10% is T_f .



SPEC. NUMBER
S8-*

SPEC. TITLE

PAGE

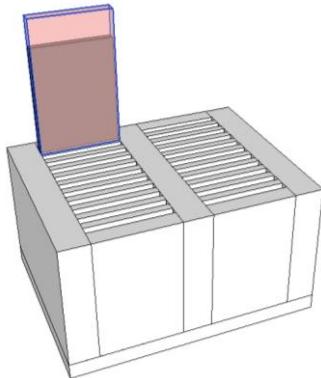
B3 EV101WXM-N80 Product Specification

22 OF 32

Figure1 Measurement Set Up**Figure2 Response Time Testing**

5.0 RELIABILITY TEST

The Reliability test items and its conditions are shown in below.

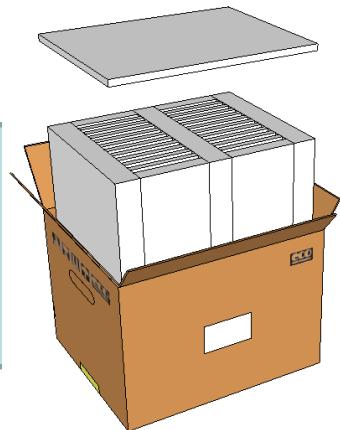

<Table 12. Reliability Test Parameters >

No	Test Items	Conditions
1	High temperature storage test	80°C 240hr Storage
2	Low temperature storage test	-30°C 240hr
3	High temperature & high humidity (operation test)	60°C 90%RH 240hr
4	Low temperature operation test	-20°C 240hr
5	High temperature operation test	70°C 240hr
6	Thermal Shock Test	[(-40°C 30min) →(80°C 30min)]/cycle, 100cycles
7	8585 Storage	85°C 85%RH 120hr
8	ESD	Air : +/- 15kV, Contact : +/- 8kV
9	Packing VIB	Acceleration:1.47Grms 5~100Hz 0.015G*2/Hz /10 0~200Hz -6dB/Oct / 200Hz 0.0038G*2/Hz / 30 min
10	Packing Drop	6 surfaces / 3edges / 1corner/ for Box Test

PRODUCT GROUP	REV	ISSUE DATE	BOE
TFT- LCD PRODUCT	P3	2022-11-30	
SPEC. NUMBER	SPEC. TITLE		PAGE
S8-*	B3 EV101WXM-N80 Product Specification		24 OF 32

6.0 PACKING INFORMATION(产品形态： LCM)

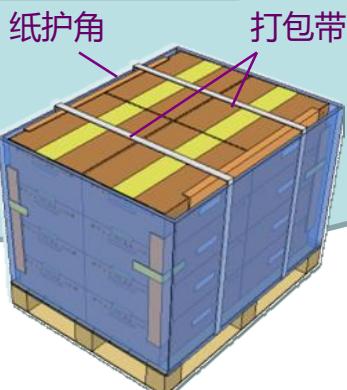
Packing procedure:



- 将1片产品竖向放入PE Bag

PE Bag开口反折

- 将产品竖向插入卡槽内(1卡槽1片产品)


- 22pcs 产品/白色EPE Box

- 将EPE Bottom 放入纸箱后

再放置EPE Cover

- 22pcs 产品/纸箱

- 每个Pallet上放3层Box
1层4箱,共计12ea Box
- Pallet外进行缠膜包装
- 264pcs Panel / Pallet

6.1 Packing Note(产品形态： LCM)

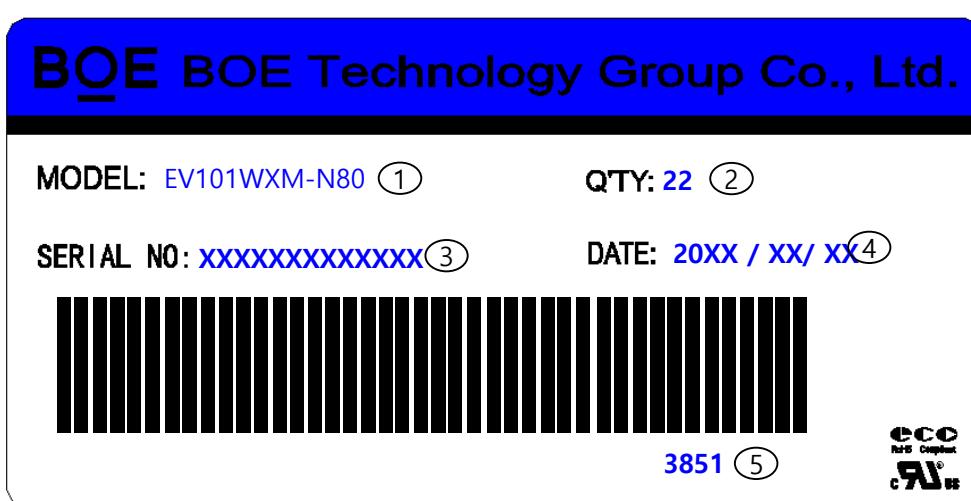
- Box Dimension: 500mm(W) x 400mm(D) x 290mm(H)
- Package Quantity in one Box: 22pcs

PRODUCT GROUP	REV	ISSUE DATE	BOE
TFT- LCD PRODUCT	P3	2022-11-30	
SPEC. NUMBER S8-*	SPEC. TITLE B3 EV101WXM-N80 Product Specification		PAGE 25 OF 32

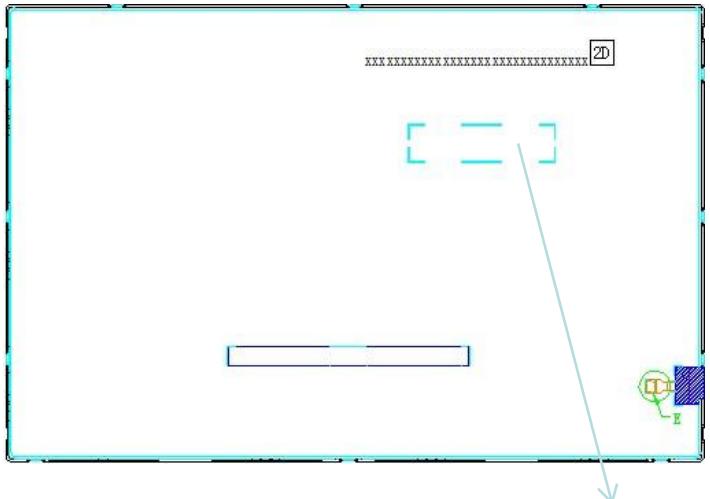
6.2 Box label (产品形态: LCM)

- Label Size :115mm*55mm

- Contents


Model : LCM

Q`ty : 22pcs/Box


Serial No. : Box Serial No. as shown below.

Date : Packing Date

FG Code : FG Code of Product

7.0 Product Label

EV101WXM-N80

XXXXXXXXXXXXXXXXXXXX

- 1
- 2
- 3

Label size: 48mm × 12mm × 0.08mm
 1. FG-CODE: EV101WXM-N80
 2. MDL ID bar code
 3. MDL ID

BOE MDL ID Rule

序 列 号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
代码	X	X	X	3	X	X	X	3	8	5	0	X	X	X	X	X	
描述	GBN代 码		等 级	B3	年	月	日	FG Code后四位				序列号					

8.0 Handling & Cautions

8.1 Mounting Method

- The panel of the LCD consists of two thin glasses with polarizers which easily get damaged. So extreme care should be taken when handling the LCD.
- Excessive stress or pressure on the glass of the LCD should be avoided, and avoid scratching polarizer (The strength should not be more than that of HB pencil). Care must be taken to insure that no torsional or compressive forces are applied to the LCD unit when it is mounted.
- If the customer's set presses the main parts of the LCD, the LCD may show the abnormal display. But this phenomenon does not mean the malfunction of the LCD and should be pressed by the way of mutual agreement.
- To determine the optimum mounting angle, refer to the viewing angle range in the specification for each model.
- Mount a LCD module with the specified mounting parts.
- Avoid stressing PCB and Driver IC during the installation.
- Drawing or bending of the COF & wire in any process is avoided.
- Careful installation and handling are necessary to prevent damage to PCB circuit.
- Installation of heat dissipation structure should meet the temperature requirements.
- Touching or rubbing the POL surface with bare hands or oilcloth is not allowed.

8.2 Caution of LCD Handling and Cleaning

- Since the LCD is made of glass, do not apply strong mechanical impact or static load onto it. Handling with care since shock, vibration, and careless handling may seriously affect the product. If it falls from a high place or receives a strong shock, the glass may be broken.
- The polarizers on the surface of panel are made from organic substances. Be very careful for chemicals not to touch the polarizers or it leads the polarizers to be deteriorated.
- If the use of a chemical is unavoidable, use soft cloth with solvent (recommended below) to clean the LCD 's surface with wipe lightly.
 - IPA(Isopropyl Alcohol), Ethyl Alcohol, Trichlorotrifluoroethane
- Do not wipe the LCD's surface with dry or hard materials that will damage the polarizers and others. Do not use the following solvent.
 - Water, Ketone, Aromatics
- It is recommended that the LCD be handled with soft gloves during assembly, etc. The polarizers on the LCD's surface are vulnerable to scratch and thus to be damaged by sharp particles..
- Do not drop water or any chemicals onto the LCD's surface.
- A protective film is supplied on the LCD and should be left in place until the LCD is required for operation.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-*	B3 EV101WXM-N80 Product Specification	28 OF 32

- The ITO pad area needs special careful caution because it could be easily corroded.
- Do not contact the ITO pad area with HCFC,Soldering flux,Chlorine,Sulfur, saliva or fingerprint. To prevent the ITO corrosion, customers are recommended that the ITO area would be covered by UV or silicon.
- Water/oil stains should be wiped immediately to prevent stains pollution and discoloration
- Surface dust could be wiped by hydrophilic cotton cloth or other soft materials (such as the light gasoline solvent soaked suede). The adherent dust should be cleaned by recommended n-hexane instead of acetone, ethanol and toluene, etc.

8.3 Caution Against Static Charge

- The LCD modules use C-MOS drivers, so customers are recommended that any unused input terminal would be connected to Vdd or Vss, do not input any signals before power is turn on, and ground you body, work/assembly area, assembly equipments to protect against static electricity.
- Remove the protective film slowly, keeping the removing direction approximate 30-degree not vertical from panel surface, If possible, under ESD control device like ion blower, and the humidity of working room should be kept over 50%RH to reduce the risk of static charge. The person who will tear off the protection film should wear anti-static wristband and the wristband should be grounded.
- Avoid the use work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.
- In handling the LCD, wear non-charged material gloves. And the conducting wrist to the earth and the conducting shoes to the earth are necessary.
- Grounding and shielding actions should be adopted to avoid electromagnetic interference.
- Connection line between the system board and PCB CNT should be as short as possible.
- Connectors are precise devices for connecting PCB and transmitting electrical signals. Operators should insert and unplug the pin connectors parallelly when assembling MDL.
- Bare-handed touching of the pin connector is not allowed.
- Stay away from the static electricity to avoid electrostatic damage.

PRODUCT GROUP	REV	ISSUE DATE	BOE
TFT- LCD PRODUCT	P3	2022-11-30	
SPEC. NUMBER	SPEC. TITLE		PAGE
S8-*	B3 EV101WXM-N80 Product Specification		29 OF 32

8.4 Caution For operation

- It is indispensable to drive the LCD within the specified voltage limit since the higher Voltage than the limit causes the shorter LCD's life. An electro-chemical reaction due to DC causes undesirable deterioration of the LCD so that the use of DC drive should avoid.
- Never use the LCD under abnormal conditions of high temperature and high humidity.
- When expose to drastic fluctuation of temperature (hot to cold or cold to hot) ,the LCD may be affected; Specifically, drastic temperature fluctuation from cold to hot ,produces dew on the LCD's surface which may affect the operation of the polarizer and the LCD.
- Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD may turn black at temperature above its operational range. However those phenomena do not mean malfunction or out of order with the LCD. The LCD will revert to normal operation once the temperature returns to the recommended temperature range for normal operation.
- Do not display the fixed pattern for a long time because it may develop image sticking due to the LCD structure. If the screen is displayed with fixed pattern, use a screen saver.
- Consultation is necessary if a long-time use for the same pattern were required.
- Consultation is necessary when under the non-specified using conditions.
- Extreme operating conditions (high temperature, high humidity, high altitude, special display mode, running time, etc.) should be consulted with the manufacturer, otherwise, reliability of the function may not be guaranteed. Extreme condition usually occurs at airports, stations, banks, stock markets, control systems, etc.
- Specified parameters can not be exceeded. (power supply voltage, input voltage, ambient temperature, etc.)
- Consultation is necessary for a long-time operation.
- Consultation is necessary for outdoor application
- Consultation is necessary when using the vertical mode. (The MDL should be rotated clockwise when using the vertical mode.)

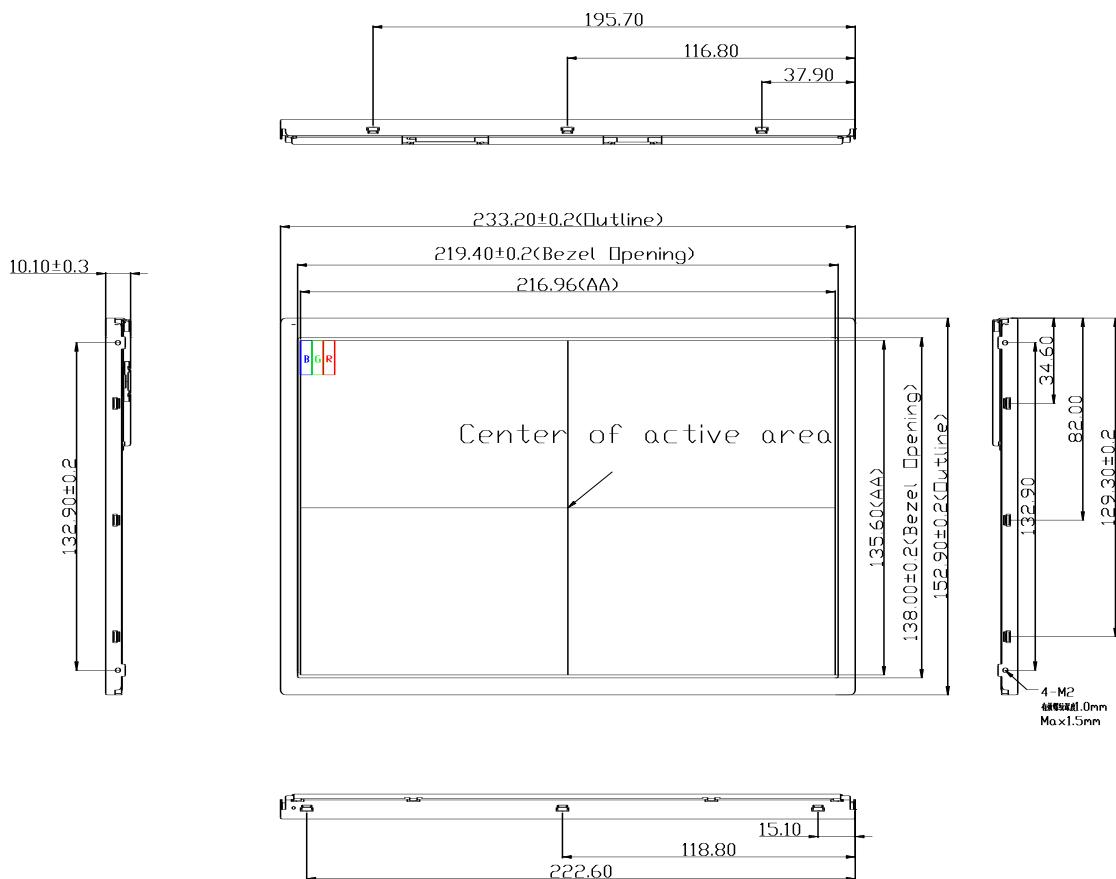
8.5 Packaging

- Modules use LCD element, and must be treated as such.
 - Avoid intense shock and falls from a height.
 - To prevent modules from degradation, do not operate or store them exposed directly to sunshine or high temperature/humidity for long periods.

PRODUCT GROUP	REV	ISSUE DATE	BOE
TFT- LCD PRODUCT	P3	2022-11-30	
SPEC. NUMBER S8-*	SPEC. TITLE B3 EV101WXM-N80 Product Specification		PAGE 30 OF 32

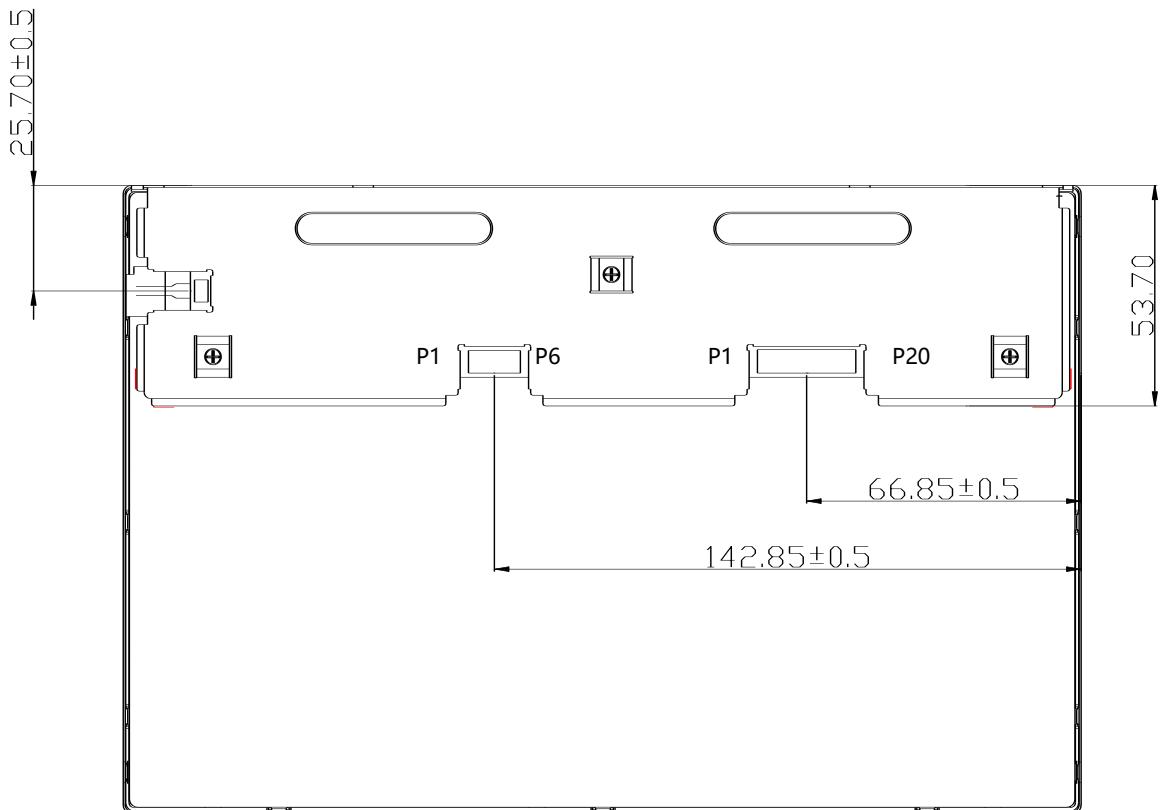
8.6 Storage

- Original protective film should be used on LCD' s surface (polarizer). Adhesive type protective film should be avoided, because it may change color and/or properties of the polarizers.
- Do not store the LCD near organic solvents or corrosive gasses.
- Keep the LCD safe from vibration, shock and pressure.
- In the case of storing for a long period of time for the purpose or replacement use, the following ways are recommended.
 - Store in a polyethylene bag with sealed so as not to enter fresh air outside in it.
 - It is recommended to be stored in a ventilated dark room to avoid illumination, UV- light and moisture entering and avoid water vapor entering.
 - Keep temperature in the specified storage temperature range. Recommended storage temperature range: 5-40°C, Environment humidity: 35-75%RH, Recommended storage time length: ≤6 Mons. It was recommended that baking process should be done after the product has been stored for a certain period of time. The suggestions are as follows:
 - ①. NO processing is needed when the storage period is less than 2 months;
 - ②. 50 C, 10% RH, 24 hr baking process is needed when the storage period is during 2-3 months;
 - ③. 50 C, 10% RH, baking 48 hr baking process is needed when the storage period .
 - Store with no touch on polarizer surface by the anything else. If possible, store the LCD in the packaging situation LCD when it was delivered.


8.7 Safety

- For the crash damaged or unnecessary LCD, it is recommended to wash off liquid crystal by either of solvents such as acetone and ethanol an should be burned up later.
- In the case the LCD is broken, watch out whether liquid crystal leaks out or not. If your hands touch the liquid crystal, wash your hands cleanly with water an soap as soon as possible.
- If you should swallow the liquid crystal, first, wash your mouth thoroughly with water, then drink a lot of water and induce vomiting, and then, consult a physician.
- If the liquid crystal should get in your eyes, flush your eyes with running water for at least fifteen minutes.
- If the liquid crystal touches your skin or clothes, remove it and wash the affected part of your skin or clothes with soap and running water.

9.0 APPENDIX


Mechanical Drawing

Drawing Attachment: Landscape Front View

Mechanical Drawing

Drawing Attachment: Landscape Back View

